添加项目文件。
This commit is contained in:
@ -0,0 +1,810 @@
|
||||
/* *
|
||||
* (c) 2016 Highsoft AS
|
||||
* Author: Øystein Moseng
|
||||
*
|
||||
* License: www.highcharts.com/license
|
||||
*/
|
||||
|
||||
'use strict';
|
||||
|
||||
import H from '../parts/Globals.js';
|
||||
import '../parts/Utilities.js';
|
||||
|
||||
var min = Math.min,
|
||||
max = Math.max,
|
||||
abs = Math.abs,
|
||||
pick = H.pick;
|
||||
|
||||
/**
|
||||
* Get index of last obstacle before xMin. Employs a type of binary search, and
|
||||
* thus requires that obstacles are sorted by xMin value.
|
||||
*
|
||||
* @private
|
||||
* @function findLastObstacleBefore
|
||||
*
|
||||
* @param {Array<object>} obstacles
|
||||
* Array of obstacles to search in.
|
||||
*
|
||||
* @param {number} xMin
|
||||
* The xMin threshold.
|
||||
*
|
||||
* @param {number} startIx
|
||||
* Starting index to search from. Must be within array range.
|
||||
*
|
||||
* @return {number}
|
||||
* The index of the last obstacle element before xMin.
|
||||
*/
|
||||
function findLastObstacleBefore(obstacles, xMin, startIx) {
|
||||
var left = startIx || 0, // left limit
|
||||
right = obstacles.length - 1, // right limit
|
||||
min = xMin - 0.0000001, // Make sure we include all obstacles at xMin
|
||||
cursor,
|
||||
cmp;
|
||||
while (left <= right) {
|
||||
cursor = (right + left) >> 1;
|
||||
cmp = min - obstacles[cursor].xMin;
|
||||
if (cmp > 0) {
|
||||
left = cursor + 1;
|
||||
} else if (cmp < 0) {
|
||||
right = cursor - 1;
|
||||
} else {
|
||||
return cursor;
|
||||
}
|
||||
}
|
||||
return left > 0 ? left - 1 : 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Test if a point lays within an obstacle.
|
||||
*
|
||||
* @private
|
||||
* @function pointWithinObstacle
|
||||
*
|
||||
* @param {object} obstacle
|
||||
* Obstacle to test.
|
||||
*
|
||||
* @param {Highcharts.Point} point
|
||||
* Point with x/y props.
|
||||
*
|
||||
* @return {boolean}
|
||||
* Whether point is within the obstacle or not.
|
||||
*/
|
||||
function pointWithinObstacle(obstacle, point) {
|
||||
return (
|
||||
point.x <= obstacle.xMax &&
|
||||
point.x >= obstacle.xMin &&
|
||||
point.y <= obstacle.yMax &&
|
||||
point.y >= obstacle.yMin
|
||||
);
|
||||
}
|
||||
|
||||
/**
|
||||
* Find the index of an obstacle that wraps around a point.
|
||||
* Returns -1 if not found.
|
||||
*
|
||||
* @private
|
||||
* @function findObstacleFromPoint
|
||||
*
|
||||
* @param {Array<object>} obstacles
|
||||
* Obstacles to test.
|
||||
*
|
||||
* @param {Highcharts.Point} point
|
||||
* Point with x/y props.
|
||||
*
|
||||
* @return {number}
|
||||
* Ix of the obstacle in the array, or -1 if not found.
|
||||
*/
|
||||
function findObstacleFromPoint(obstacles, point) {
|
||||
var i = findLastObstacleBefore(obstacles, point.x + 1) + 1;
|
||||
while (i--) {
|
||||
if (obstacles[i].xMax >= point.x &&
|
||||
// optimization using lazy evaluation
|
||||
pointWithinObstacle(obstacles[i], point)) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get SVG path array from array of line segments.
|
||||
*
|
||||
* @private
|
||||
* @function pathFromSegments
|
||||
*
|
||||
* @param {Array<object>} segments
|
||||
* The segments to build the path from.
|
||||
*
|
||||
* @return {Highcharts.SVGPathArray}
|
||||
* SVG path array as accepted by the SVG Renderer.
|
||||
*/
|
||||
function pathFromSegments(segments) {
|
||||
var path = [];
|
||||
if (segments.length) {
|
||||
path.push('M', segments[0].start.x, segments[0].start.y);
|
||||
for (var i = 0; i < segments.length; ++i) {
|
||||
path.push('L', segments[i].end.x, segments[i].end.y);
|
||||
}
|
||||
}
|
||||
return path;
|
||||
}
|
||||
|
||||
/**
|
||||
* Limits obstacle max/mins in all directions to bounds. Modifies input
|
||||
* obstacle.
|
||||
*
|
||||
* @private
|
||||
* @function limitObstacleToBounds
|
||||
*
|
||||
* @param {object} obstacle
|
||||
* Obstacle to limit.
|
||||
*
|
||||
* @param {object} bounds
|
||||
* Bounds to use as limit.
|
||||
*/
|
||||
function limitObstacleToBounds(obstacle, bounds) {
|
||||
obstacle.yMin = max(obstacle.yMin, bounds.yMin);
|
||||
obstacle.yMax = min(obstacle.yMax, bounds.yMax);
|
||||
obstacle.xMin = max(obstacle.xMin, bounds.xMin);
|
||||
obstacle.xMax = min(obstacle.xMax, bounds.xMax);
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Define the available pathfinding algorithms.
|
||||
// Algorithms take up to 3 arguments: starting point, ending point, and an
|
||||
// options object.
|
||||
var algorithms = {
|
||||
|
||||
/**
|
||||
* Get an SVG path from a starting coordinate to an ending coordinate.
|
||||
* Draws a straight line.
|
||||
*
|
||||
* @function Highcharts.Pathfinder.algorithms.straight
|
||||
*
|
||||
* @param {object} start
|
||||
* Starting coordinate, object with x/y props.
|
||||
*
|
||||
* @param {object} end
|
||||
* Ending coordinate, object with x/y props.
|
||||
*
|
||||
* @return {object}
|
||||
* An object with the SVG path in Array form as accepted by the SVG
|
||||
* renderer, as well as an array of new obstacles making up this
|
||||
* path.
|
||||
*/
|
||||
straight: function (start, end) {
|
||||
return {
|
||||
path: ['M', start.x, start.y, 'L', end.x, end.y],
|
||||
obstacles: [{ start: start, end: end }]
|
||||
};
|
||||
},
|
||||
|
||||
/**
|
||||
* Find a path from a starting coordinate to an ending coordinate, using
|
||||
* right angles only, and taking only starting/ending obstacle into
|
||||
* consideration.
|
||||
*
|
||||
* @function Highcharts.Pathfinder.algorithms.simpleConnect
|
||||
*
|
||||
* @param {object} start
|
||||
* Starting coordinate, object with x/y props.
|
||||
*
|
||||
* @param {object} end
|
||||
* Ending coordinate, object with x/y props.
|
||||
*
|
||||
* @param {object} options
|
||||
* Options for the algorithm:
|
||||
* - chartObstacles: Array of chart obstacles to avoid
|
||||
* - startDirectionX: Optional. True if starting in the X direction.
|
||||
* If not provided, the algorithm starts in the direction that is
|
||||
* the furthest between start/end.
|
||||
*
|
||||
* @return {object}
|
||||
* An object with the SVG path in Array form as accepted by the SVG
|
||||
* renderer, as well as an array of new obstacles making up this
|
||||
* path.
|
||||
*/
|
||||
simpleConnect: H.extend(function (start, end, options) {
|
||||
var segments = [],
|
||||
endSegment,
|
||||
dir = pick(
|
||||
options.startDirectionX,
|
||||
abs(end.x - start.x) > abs(end.y - start.y)
|
||||
) ? 'x' : 'y',
|
||||
chartObstacles = options.chartObstacles,
|
||||
startObstacleIx = findObstacleFromPoint(chartObstacles, start),
|
||||
endObstacleIx = findObstacleFromPoint(chartObstacles, end),
|
||||
startObstacle,
|
||||
endObstacle,
|
||||
prevWaypoint,
|
||||
waypoint,
|
||||
waypoint2,
|
||||
useMax,
|
||||
endPoint;
|
||||
|
||||
// Return a clone of a point with a property set from a target object,
|
||||
// optionally with an offset
|
||||
function copyFromPoint(from, fromKey, to, toKey, offset) {
|
||||
var point = {
|
||||
x: from.x,
|
||||
y: from.y
|
||||
};
|
||||
point[fromKey] = to[toKey || fromKey] + (offset || 0);
|
||||
return point;
|
||||
}
|
||||
|
||||
// Return waypoint outside obstacle
|
||||
function getMeOut(obstacle, point, direction) {
|
||||
var useMax = abs(point[direction] - obstacle[direction + 'Min']) >
|
||||
abs(point[direction] - obstacle[direction + 'Max']);
|
||||
return copyFromPoint(
|
||||
point,
|
||||
direction,
|
||||
obstacle,
|
||||
direction + (useMax ? 'Max' : 'Min'),
|
||||
useMax ? 1 : -1
|
||||
);
|
||||
}
|
||||
|
||||
// Pull out end point
|
||||
if (endObstacleIx > -1) {
|
||||
endObstacle = chartObstacles[endObstacleIx];
|
||||
waypoint = getMeOut(endObstacle, end, dir);
|
||||
endSegment = {
|
||||
start: waypoint,
|
||||
end: end
|
||||
};
|
||||
endPoint = waypoint;
|
||||
} else {
|
||||
endPoint = end;
|
||||
}
|
||||
|
||||
// If an obstacle envelops the start point, add a segment to get out,
|
||||
// and around it.
|
||||
if (startObstacleIx > -1) {
|
||||
startObstacle = chartObstacles[startObstacleIx];
|
||||
waypoint = getMeOut(startObstacle, start, dir);
|
||||
segments.push({
|
||||
start: start,
|
||||
end: waypoint
|
||||
});
|
||||
|
||||
// If we are going back again, switch direction to get around start
|
||||
// obstacle.
|
||||
if (
|
||||
waypoint[dir] > start[dir] === // Going towards max from start
|
||||
waypoint[dir] > endPoint[dir] // Going towards min to end
|
||||
) {
|
||||
dir = dir === 'y' ? 'x' : 'y';
|
||||
useMax = start[dir] < end[dir];
|
||||
segments.push({
|
||||
start: waypoint,
|
||||
end: copyFromPoint(
|
||||
waypoint,
|
||||
dir,
|
||||
startObstacle,
|
||||
dir + (useMax ? 'Max' : 'Min'),
|
||||
useMax ? 1 : -1
|
||||
)
|
||||
});
|
||||
|
||||
// Switch direction again
|
||||
dir = dir === 'y' ? 'x' : 'y';
|
||||
}
|
||||
}
|
||||
|
||||
// We are around the start obstacle. Go towards the end in one
|
||||
// direction.
|
||||
prevWaypoint = segments.length ?
|
||||
segments[segments.length - 1].end :
|
||||
start;
|
||||
waypoint = copyFromPoint(prevWaypoint, dir, endPoint);
|
||||
segments.push({
|
||||
start: prevWaypoint,
|
||||
end: waypoint
|
||||
});
|
||||
|
||||
// Final run to end point in the other direction
|
||||
dir = dir === 'y' ? 'x' : 'y';
|
||||
waypoint2 = copyFromPoint(waypoint, dir, endPoint);
|
||||
segments.push({
|
||||
start: waypoint,
|
||||
end: waypoint2
|
||||
});
|
||||
|
||||
// Finally add the endSegment
|
||||
segments.push(endSegment);
|
||||
|
||||
return {
|
||||
path: pathFromSegments(segments),
|
||||
obstacles: segments
|
||||
};
|
||||
}, {
|
||||
requiresObstacles: true
|
||||
}),
|
||||
|
||||
/**
|
||||
* Find a path from a starting coordinate to an ending coordinate, taking
|
||||
* obstacles into consideration. Might not always find the optimal path,
|
||||
* but is fast, and usually good enough.
|
||||
*
|
||||
* @function Highcharts.Pathfinder.algorithms.fastAvoid
|
||||
*
|
||||
* @param {object} start
|
||||
* Starting coordinate, object with x/y props.
|
||||
*
|
||||
* @param {object} end
|
||||
* Ending coordinate, object with x/y props.
|
||||
*
|
||||
* @param {object} options
|
||||
* Options for the algorithm.
|
||||
* - chartObstacles: Array of chart obstacles to avoid
|
||||
* - lineObstacles: Array of line obstacles to jump over
|
||||
* - obstacleMetrics: Object with metrics of chartObstacles cached
|
||||
* - hardBounds: Hard boundaries to not cross
|
||||
* - obstacleOptions: Options for the obstacles, including margin
|
||||
* - startDirectionX: Optional. True if starting in the X direction.
|
||||
* If not provided, the algorithm starts in the
|
||||
* direction that is the furthest between
|
||||
* start/end.
|
||||
*
|
||||
* @return {object}
|
||||
* An object with the SVG path in Array form as accepted by the SVG
|
||||
* renderer, as well as an array of new obstacles making up this
|
||||
* path.
|
||||
*/
|
||||
fastAvoid: H.extend(function (start, end, options) {
|
||||
/*
|
||||
Algorithm rules/description
|
||||
- Find initial direction
|
||||
- Determine soft/hard max for each direction.
|
||||
- Move along initial direction until obstacle.
|
||||
- Change direction.
|
||||
- If hitting obstacle, first try to change length of previous line
|
||||
before changing direction again.
|
||||
|
||||
Soft min/max x = start/destination x +/- widest obstacle + margin
|
||||
Soft min/max y = start/destination y +/- tallest obstacle + margin
|
||||
|
||||
@todo:
|
||||
- Make retrospective, try changing prev segment to reduce
|
||||
corners
|
||||
- Fix logic for breaking out of end-points - not always picking
|
||||
the best direction currently
|
||||
- When going around the end obstacle we should not always go the
|
||||
shortest route, rather pick the one closer to the end point
|
||||
*/
|
||||
var dirIsX = pick(
|
||||
options.startDirectionX,
|
||||
abs(end.x - start.x) > abs(end.y - start.y)
|
||||
),
|
||||
dir = dirIsX ? 'x' : 'y',
|
||||
segments,
|
||||
useMax,
|
||||
extractedEndPoint,
|
||||
endSegments = [],
|
||||
forceObstacleBreak = false, // Used in clearPathTo to keep track of
|
||||
// when to force break through an obstacle.
|
||||
|
||||
// Boundaries to stay within. If beyond soft boundary, prefer to
|
||||
// change direction ASAP. If at hard max, always change immediately.
|
||||
metrics = options.obstacleMetrics,
|
||||
softMinX = min(start.x, end.x) - metrics.maxWidth - 10,
|
||||
softMaxX = max(start.x, end.x) + metrics.maxWidth + 10,
|
||||
softMinY = min(start.y, end.y) - metrics.maxHeight - 10,
|
||||
softMaxY = max(start.y, end.y) + metrics.maxHeight + 10,
|
||||
|
||||
// Obstacles
|
||||
chartObstacles = options.chartObstacles,
|
||||
startObstacleIx = findLastObstacleBefore(chartObstacles, softMinX),
|
||||
endObstacleIx = findLastObstacleBefore(chartObstacles, softMaxX);
|
||||
|
||||
// How far can you go between two points before hitting an obstacle?
|
||||
// Does not work for diagonal lines (because it doesn't have to).
|
||||
function pivotPoint(fromPoint, toPoint, directionIsX) {
|
||||
var firstPoint,
|
||||
lastPoint,
|
||||
highestPoint,
|
||||
lowestPoint,
|
||||
i,
|
||||
searchDirection = fromPoint.x < toPoint.x ? 1 : -1;
|
||||
|
||||
if (fromPoint.x < toPoint.x) {
|
||||
firstPoint = fromPoint;
|
||||
lastPoint = toPoint;
|
||||
} else {
|
||||
firstPoint = toPoint;
|
||||
lastPoint = fromPoint;
|
||||
}
|
||||
|
||||
if (fromPoint.y < toPoint.y) {
|
||||
lowestPoint = fromPoint;
|
||||
highestPoint = toPoint;
|
||||
} else {
|
||||
lowestPoint = toPoint;
|
||||
highestPoint = fromPoint;
|
||||
}
|
||||
|
||||
// Go through obstacle range in reverse if toPoint is before
|
||||
// fromPoint in the X-dimension.
|
||||
i = searchDirection < 0 ?
|
||||
// Searching backwards, start at last obstacle before last point
|
||||
min(findLastObstacleBefore(chartObstacles, lastPoint.x),
|
||||
chartObstacles.length - 1) :
|
||||
// Forwards. Since we're not sorted by xMax, we have to look
|
||||
// at all obstacles.
|
||||
0;
|
||||
|
||||
// Go through obstacles in this X range
|
||||
while (chartObstacles[i] && (
|
||||
searchDirection > 0 && chartObstacles[i].xMin <= lastPoint.x ||
|
||||
searchDirection < 0 && chartObstacles[i].xMax >= firstPoint.x
|
||||
)) {
|
||||
// If this obstacle is between from and to points in a straight
|
||||
// line, pivot at the intersection.
|
||||
if (
|
||||
chartObstacles[i].xMin <= lastPoint.x &&
|
||||
chartObstacles[i].xMax >= firstPoint.x &&
|
||||
chartObstacles[i].yMin <= highestPoint.y &&
|
||||
chartObstacles[i].yMax >= lowestPoint.y
|
||||
) {
|
||||
if (directionIsX) {
|
||||
return {
|
||||
y: fromPoint.y,
|
||||
x: fromPoint.x < toPoint.x ?
|
||||
chartObstacles[i].xMin - 1 :
|
||||
chartObstacles[i].xMax + 1,
|
||||
obstacle: chartObstacles[i]
|
||||
};
|
||||
}
|
||||
// else ...
|
||||
return {
|
||||
x: fromPoint.x,
|
||||
y: fromPoint.y < toPoint.y ?
|
||||
chartObstacles[i].yMin - 1 :
|
||||
chartObstacles[i].yMax + 1,
|
||||
obstacle: chartObstacles[i]
|
||||
};
|
||||
}
|
||||
|
||||
i += searchDirection;
|
||||
}
|
||||
|
||||
return toPoint;
|
||||
}
|
||||
|
||||
/**
|
||||
* Decide in which direction to dodge or get out of an obstacle.
|
||||
* Considers desired direction, which way is shortest, soft and hard
|
||||
* bounds.
|
||||
*
|
||||
* (? Returns a string, either xMin, xMax, yMin or yMax.)
|
||||
*
|
||||
* @private
|
||||
* @function
|
||||
*
|
||||
* @param {object} obstacle
|
||||
* Obstacle to dodge/escape.
|
||||
*
|
||||
* @param {object} fromPoint
|
||||
* Point with x/y props that's dodging/escaping.
|
||||
*
|
||||
* @param {object} toPoint
|
||||
* Goal point.
|
||||
*
|
||||
* @param {boolean} dirIsX
|
||||
* Dodge in X dimension.
|
||||
*
|
||||
* @param {object} bounds
|
||||
* Hard and soft boundaries.
|
||||
*
|
||||
* @return {boolean}
|
||||
* Use max or not.
|
||||
*/
|
||||
function getDodgeDirection(
|
||||
obstacle,
|
||||
fromPoint,
|
||||
toPoint,
|
||||
dirIsX,
|
||||
bounds
|
||||
) {
|
||||
var softBounds = bounds.soft,
|
||||
hardBounds = bounds.hard,
|
||||
dir = dirIsX ? 'x' : 'y',
|
||||
toPointMax = { x: fromPoint.x, y: fromPoint.y },
|
||||
toPointMin = { x: fromPoint.x, y: fromPoint.y },
|
||||
minPivot,
|
||||
maxPivot,
|
||||
maxOutOfSoftBounds = obstacle[dir + 'Max'] >=
|
||||
softBounds[dir + 'Max'],
|
||||
minOutOfSoftBounds = obstacle[dir + 'Min'] <=
|
||||
softBounds[dir + 'Min'],
|
||||
maxOutOfHardBounds = obstacle[dir + 'Max'] >=
|
||||
hardBounds[dir + 'Max'],
|
||||
minOutOfHardBounds = obstacle[dir + 'Min'] <=
|
||||
hardBounds[dir + 'Min'],
|
||||
// Find out if we should prefer one direction over the other if
|
||||
// we can choose freely
|
||||
minDistance = abs(obstacle[dir + 'Min'] - fromPoint[dir]),
|
||||
maxDistance = abs(obstacle[dir + 'Max'] - fromPoint[dir]),
|
||||
// If it's a small difference, pick the one leading towards dest
|
||||
// point. Otherwise pick the shortest distance
|
||||
useMax = abs(minDistance - maxDistance) < 10 ?
|
||||
fromPoint[dir] < toPoint[dir] :
|
||||
maxDistance < minDistance;
|
||||
|
||||
// Check if we hit any obstacles trying to go around in either
|
||||
// direction.
|
||||
toPointMin[dir] = obstacle[dir + 'Min'];
|
||||
toPointMax[dir] = obstacle[dir + 'Max'];
|
||||
minPivot = pivotPoint(fromPoint, toPointMin, dirIsX)[dir] !==
|
||||
toPointMin[dir];
|
||||
maxPivot = pivotPoint(fromPoint, toPointMax, dirIsX)[dir] !==
|
||||
toPointMax[dir];
|
||||
useMax = minPivot ?
|
||||
(maxPivot ? useMax : true) :
|
||||
(maxPivot ? false : useMax);
|
||||
|
||||
// useMax now contains our preferred choice, bounds not taken into
|
||||
// account. If both or neither direction is out of bounds we want to
|
||||
// use this.
|
||||
|
||||
// Deal with soft bounds
|
||||
useMax = minOutOfSoftBounds ?
|
||||
(maxOutOfSoftBounds ? useMax : true) : // Out on min
|
||||
(maxOutOfSoftBounds ? false : useMax); // Not out on min
|
||||
|
||||
// Deal with hard bounds
|
||||
useMax = minOutOfHardBounds ?
|
||||
(maxOutOfHardBounds ? useMax : true) : // Out on min
|
||||
(maxOutOfHardBounds ? false : useMax); // Not out on min
|
||||
|
||||
return useMax;
|
||||
}
|
||||
|
||||
// Find a clear path between point
|
||||
function clearPathTo(fromPoint, toPoint, dirIsX) {
|
||||
// Don't waste time if we've hit goal
|
||||
if (fromPoint.x === toPoint.x && fromPoint.y === toPoint.y) {
|
||||
return [];
|
||||
}
|
||||
|
||||
var dir = dirIsX ? 'x' : 'y',
|
||||
pivot,
|
||||
segments,
|
||||
waypoint,
|
||||
waypointUseMax,
|
||||
envelopingObstacle,
|
||||
secondEnvelopingObstacle,
|
||||
envelopWaypoint,
|
||||
obstacleMargin = options.obstacleOptions.margin,
|
||||
bounds = {
|
||||
soft: {
|
||||
xMin: softMinX,
|
||||
xMax: softMaxX,
|
||||
yMin: softMinY,
|
||||
yMax: softMaxY
|
||||
},
|
||||
hard: options.hardBounds
|
||||
};
|
||||
|
||||
// If fromPoint is inside an obstacle we have a problem. Break out
|
||||
// by just going to the outside of this obstacle. We prefer to go to
|
||||
// the nearest edge in the chosen direction.
|
||||
envelopingObstacle =
|
||||
findObstacleFromPoint(chartObstacles, fromPoint);
|
||||
if (envelopingObstacle > -1) {
|
||||
envelopingObstacle = chartObstacles[envelopingObstacle];
|
||||
waypointUseMax = getDodgeDirection(
|
||||
envelopingObstacle, fromPoint, toPoint, dirIsX, bounds
|
||||
);
|
||||
|
||||
// Cut obstacle to hard bounds to make sure we stay within
|
||||
limitObstacleToBounds(envelopingObstacle, options.hardBounds);
|
||||
|
||||
envelopWaypoint = dirIsX ? {
|
||||
y: fromPoint.y,
|
||||
x: envelopingObstacle[waypointUseMax ? 'xMax' : 'xMin'] +
|
||||
(waypointUseMax ? 1 : -1)
|
||||
} : {
|
||||
x: fromPoint.x,
|
||||
y: envelopingObstacle[waypointUseMax ? 'yMax' : 'yMin'] +
|
||||
(waypointUseMax ? 1 : -1)
|
||||
};
|
||||
|
||||
// If we crashed into another obstacle doing this, we put the
|
||||
// waypoint between them instead
|
||||
secondEnvelopingObstacle = findObstacleFromPoint(
|
||||
chartObstacles, envelopWaypoint);
|
||||
if (secondEnvelopingObstacle > -1) {
|
||||
secondEnvelopingObstacle = chartObstacles[
|
||||
secondEnvelopingObstacle
|
||||
];
|
||||
|
||||
// Cut obstacle to hard bounds
|
||||
limitObstacleToBounds(
|
||||
secondEnvelopingObstacle,
|
||||
options.hardBounds
|
||||
);
|
||||
|
||||
// Modify waypoint to lay between obstacles
|
||||
envelopWaypoint[dir] = waypointUseMax ? max(
|
||||
envelopingObstacle[dir + 'Max'] - obstacleMargin + 1,
|
||||
(
|
||||
secondEnvelopingObstacle[dir + 'Min'] +
|
||||
envelopingObstacle[dir + 'Max']
|
||||
) / 2
|
||||
) :
|
||||
min(
|
||||
envelopingObstacle[dir + 'Min'] + obstacleMargin - 1,
|
||||
(
|
||||
secondEnvelopingObstacle[dir + 'Max'] +
|
||||
envelopingObstacle[dir + 'Min']
|
||||
) / 2
|
||||
);
|
||||
|
||||
// We are not going anywhere. If this happens for the first
|
||||
// time, do nothing. Otherwise, try to go to the extreme of
|
||||
// the obstacle pair in the current direction.
|
||||
if (fromPoint.x === envelopWaypoint.x &&
|
||||
fromPoint.y === envelopWaypoint.y) {
|
||||
if (forceObstacleBreak) {
|
||||
envelopWaypoint[dir] = waypointUseMax ?
|
||||
max(
|
||||
envelopingObstacle[dir + 'Max'],
|
||||
secondEnvelopingObstacle[dir + 'Max']
|
||||
) + 1 :
|
||||
min(
|
||||
envelopingObstacle[dir + 'Min'],
|
||||
secondEnvelopingObstacle[dir + 'Min']
|
||||
) - 1;
|
||||
}
|
||||
// Toggle on if off, and the opposite
|
||||
forceObstacleBreak = !forceObstacleBreak;
|
||||
} else {
|
||||
// This point is not identical to previous.
|
||||
// Clear break trigger.
|
||||
forceObstacleBreak = false;
|
||||
}
|
||||
}
|
||||
|
||||
segments = [{
|
||||
start: fromPoint,
|
||||
end: envelopWaypoint
|
||||
}];
|
||||
|
||||
} else { // If not enveloping, use standard pivot calculation
|
||||
|
||||
pivot = pivotPoint(fromPoint, {
|
||||
x: dirIsX ? toPoint.x : fromPoint.x,
|
||||
y: dirIsX ? fromPoint.y : toPoint.y
|
||||
}, dirIsX);
|
||||
|
||||
segments = [{
|
||||
start: fromPoint,
|
||||
end: {
|
||||
x: pivot.x,
|
||||
y: pivot.y
|
||||
}
|
||||
}];
|
||||
|
||||
// Pivot before goal, use a waypoint to dodge obstacle
|
||||
if (pivot[dirIsX ? 'x' : 'y'] !== toPoint[dirIsX ? 'x' : 'y']) {
|
||||
// Find direction of waypoint
|
||||
waypointUseMax = getDodgeDirection(
|
||||
pivot.obstacle, pivot, toPoint, !dirIsX, bounds
|
||||
);
|
||||
|
||||
// Cut waypoint to hard bounds
|
||||
limitObstacleToBounds(pivot.obstacle, options.hardBounds);
|
||||
|
||||
waypoint = {
|
||||
x: dirIsX ?
|
||||
pivot.x :
|
||||
pivot.obstacle[waypointUseMax ? 'xMax' : 'xMin'] +
|
||||
(waypointUseMax ? 1 : -1),
|
||||
y: dirIsX ?
|
||||
pivot.obstacle[waypointUseMax ? 'yMax' : 'yMin'] +
|
||||
(waypointUseMax ? 1 : -1) :
|
||||
pivot.y
|
||||
};
|
||||
|
||||
// We're changing direction here, store that to make sure we
|
||||
// also change direction when adding the last segment array
|
||||
// after handling waypoint.
|
||||
dirIsX = !dirIsX;
|
||||
|
||||
segments = segments.concat(clearPathTo({
|
||||
x: pivot.x,
|
||||
y: pivot.y
|
||||
}, waypoint, dirIsX));
|
||||
}
|
||||
}
|
||||
|
||||
// Get segments for the other direction too
|
||||
// Recursion is our friend
|
||||
segments = segments.concat(clearPathTo(
|
||||
segments[segments.length - 1].end, toPoint, !dirIsX
|
||||
));
|
||||
|
||||
return segments;
|
||||
}
|
||||
|
||||
// Extract point to outside of obstacle in whichever direction is
|
||||
// closest. Returns new point outside obstacle.
|
||||
function extractFromObstacle(obstacle, point, goalPoint) {
|
||||
var dirIsX = min(obstacle.xMax - point.x, point.x - obstacle.xMin) <
|
||||
min(obstacle.yMax - point.y, point.y - obstacle.yMin),
|
||||
bounds = {
|
||||
soft: options.hardBounds,
|
||||
hard: options.hardBounds
|
||||
},
|
||||
useMax = getDodgeDirection(
|
||||
obstacle, point, goalPoint, dirIsX, bounds
|
||||
);
|
||||
|
||||
return dirIsX ? {
|
||||
y: point.y,
|
||||
x: obstacle[useMax ? 'xMax' : 'xMin'] + (useMax ? 1 : -1)
|
||||
} : {
|
||||
x: point.x,
|
||||
y: obstacle[useMax ? 'yMax' : 'yMin'] + (useMax ? 1 : -1)
|
||||
};
|
||||
}
|
||||
|
||||
// Cut the obstacle array to soft bounds for optimization in large
|
||||
// datasets.
|
||||
chartObstacles =
|
||||
chartObstacles.slice(startObstacleIx, endObstacleIx + 1);
|
||||
|
||||
// If an obstacle envelops the end point, move it out of there and add
|
||||
// a little segment to where it was.
|
||||
if ((endObstacleIx = findObstacleFromPoint(chartObstacles, end)) > -1) {
|
||||
extractedEndPoint = extractFromObstacle(
|
||||
chartObstacles[endObstacleIx],
|
||||
end,
|
||||
start
|
||||
);
|
||||
endSegments.push({
|
||||
end: end,
|
||||
start: extractedEndPoint
|
||||
});
|
||||
end = extractedEndPoint;
|
||||
}
|
||||
// If it's still inside one or more obstacles, get out of there by
|
||||
// force-moving towards the start point.
|
||||
while (
|
||||
(endObstacleIx = findObstacleFromPoint(chartObstacles, end)) > -1
|
||||
) {
|
||||
useMax = end[dir] - start[dir] < 0;
|
||||
extractedEndPoint = {
|
||||
x: end.x,
|
||||
y: end.y
|
||||
};
|
||||
extractedEndPoint[dir] = chartObstacles[endObstacleIx][
|
||||
useMax ? dir + 'Max' : dir + 'Min'
|
||||
] + (useMax ? 1 : -1);
|
||||
endSegments.push({
|
||||
end: end,
|
||||
start: extractedEndPoint
|
||||
});
|
||||
end = extractedEndPoint;
|
||||
}
|
||||
|
||||
// Find the path
|
||||
segments = clearPathTo(start, end, dirIsX);
|
||||
|
||||
// Add the end-point segments
|
||||
segments = segments.concat(endSegments.reverse());
|
||||
|
||||
return {
|
||||
path: pathFromSegments(segments),
|
||||
obstacles: segments
|
||||
};
|
||||
}, {
|
||||
requiresObstacles: true
|
||||
})
|
||||
};
|
||||
|
||||
export default algorithms;
|
Reference in New Issue
Block a user